본문내용 바로가기

Bringing you the latest news from LS Mtron.

Teijin and CSP unveil lightweight EV battery enclosure

Date : 2021.01.11


Teijin and CSP unveil lightweight EV battery enclosure




Continental Structural Plastics (CSP), along with its parent company Teijin, has unveiled an innovative honeycomb Class A panel technology and an advanced, multi-material EV battery enclosure that can be molded in any number of CSP’s proprietary composite formulations.


These component technologies were developed at the company’s new Advanced Technologies Center located in Michigan. It is a 47,500 square-foot facility of which 24,000 is dedicated to R&D efforts to develop next generation materials and processes to move CSP and Teijin beyond just SMC and into new markets and technologies.


Before CSP was acquired by Teijin, this facility was a Teijin R&D center, and is where the Sereebo manufacturing process was developed. This is the process now in use to manufacture the PACE Award winning GMC Sierra Denali CarbonPro pickup box – the industry’s first carbon fiber pickup box.




CSP’s new multi-material electric vehicle battery enclosure.




“We are developing technologies and processes here that leverage CSP and Teijin’s expertise in thermoplastic and thermoset composites, carbon fiber and manufacturing to provide our customers with new options for existing and future vehicle programs,” said Hugh Foran, executive director, New Business Development, New Markets & Technologies.


Following Teijin’s acquisition of CSP, the Advanced Technologies Center began transitioning to include broader R&D capabilities. The first of these projects is the new honeycomb manufacturing process which produces ultra-lightweight Class A panels.


Considered a “sandwich” composite, these panels use a lightweight, honeycomb core, clad with natural fiber, glass fiber, or carbon fiber skins that are wetted with PUR resin. This process enables the molding of complex shapes and sharp edges, and results in panels that offer very high stiffness at a very low weight.


CSP is currently in development and production of more than 34 different electric vehicle battery box covers in both the US and China. However, to expand their offering and provide customers with a superior battery enclosure, CSP and Teijin have developed a full-sized, multi-material battery enclosure featuring one-piece composite cover and one-piece composite tray with aluminum and steel reinforcements.


By molding the cover and the tray each as one piece, CSP has created a system which is easier to seal and can be certified prior to shipment. The company has two patents pending for its innovative box assembly and fastening systems.


The company also developed a mounting frame utilizing structural foam for energy absorption. This enables a reduced frame thickness and weight, while improving crash performance. Additional benefits of the multi-material battery enclosure include:


- Non-conductive

- Can be molded in complex shapes

- Less complexity in tooling

- High strength

- Dimensional stability

- Mold-in sealing features

- Ability to mold-in shielding, including EMI and RFI protection

- Corrosion resistance

- Reduced tooling cost


All told, the CSP multi-material battery enclosure is 15% lighter than a steel battery box. Although it is equal in weight to an aluminum enclosure, the CSP enclosure offers better temperature resistance than aluminum, especially if the phenolic resin system is used.


Additionally, the one-piece design for the tray has no through holes, so no sealing or sealant are required. This not only eliminates the chance of leaks, it reduces overall production costs and complexity.


And CSP’s battery enclosure materials options include:


Traditional high-fill polyester/vinyl ester ATH system that uses conventional SMC chemistries, is easily adapted to existing tools and will give excellent baseline performance in the right design.


Intumescent system utilizing similar chemistry to traditional SMC, but with better flammability and thermal runaway performance.


Phenolic system which is ideal for high temperature applications where parts must meet fire safety, smoke emission, combustion and toxicity requirements. A phenolic system will have excellent flame retardance, heat and chemical resistance, and electrical non-conductivity characteristics



source : http://www.adsalecprj.com/en/news_show-71457.html


edit : plastics handler http://www.ihandler.co.kr

자료출처 : China Plastic & Rubber Journal edit : handler

목록